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Abstract. For two coupled identical quantum dots in a two-mode cavity, we determine the conditions of
two-photon and single-photon resonance. It is shown that the exciton-phonon interaction reduces the Rabi
frequencies of each model and the Förster interaction between double quantum dots even at absolute zero
temperature. The exciton-phonon interaction also makes a contribution to the static exciton-exciton dipole
interaction energy. Furthermore, the additional interactions can modify the conditions of photon resonance
significantly. A more realistic case of two nonidentical quantum dots is also considered. The influence of
parameter misfits on the quantum system is discussed.

PACS. 73.21.La Quantum dots – 71.35.-y Excitons and related phenomena – 42.50.Pq Cavity quantum
electrodynamics; micromasers

1 Introduction

Quantum information, quantum computation, and quan-
tum teleportation are becoming more and more promising
with the developments of science and technology. So sci-
entists make great efforts to find some physical systems
to test and realize their ideas. A variety of hopeful candi-
dates are cavity QED with atoms [1–6], trapped ions [7,8],
NMR [9,10], and superconducting devices [11–14]. How-
ever, recent developments in semiconductor nanotechnol-
ogy indicate that excitons in quantum dots have many
advantages for the implementation of quantum computing
processes [15–17]. To make the results more fruitful, the
cavity QED techniques can be used [18–20]. For the sys-
tem with more than one quantum dot, the coupling among
quantum dots becomes important [21]. Therefore, study-
ing the coherent time evolution of the coupled quantum
dots in cavity is becoming an important fundamental work
in this regime. There are two kinds of interaction among
them. One is the static exciton-exciton dipole coupling
which exists only when both dots are excited. This interac-
tion can be used to produce entangled few-exciton states
via ultrafast laser-pulse sequences [22,23]. The other is
Förster interaction which transfers an exciton from one
quantum dot to the other [16,24,25]. This kind of inter-
action is essential to generate maximally entangled Bell
states and GHZ states [26] and to implement quantum
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teleportation [27]. However, the fundamental limitation
to the quantum computation based on quantum dot cav-
ity QED is the exciton-phonon interaction which causes
decoherences of quantum systems. Therefore, analyzing
such effects and finding ways to suppress them are be-
coming one of the hottest research subjects. The work by
Yi et al. [28] investigates two coupled identical quantum
dots interacting with the laser pulse. The exciton-phonon
interaction is taken into consideration at last, but the au-
thors apply perturbative method. Although reference [19]
considers the effects of exciton-phonon interaction more
thoroughly, the quantum dot and cavity mode are single.

The main parts of this paper deal with two coupled
identical quantum dots which are embedded in a high-Q
two-mode cavity and coupled to a common phonon bath
and two coupled nonidentical quantum dots embedded in
a single mode cavity and a common phonon bath. We get
the coherent time evolution of the quantum system and
investigate the effects of exciton-phonon interaction with
canonical transformation method.

2 Model Hamiltonian

In the model mentioned above, each quantum dot has the
ground state |−〉 (no exciton) and first excited state |+〉
(one exciton). Then the Hamiltonian of the system is given
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by (� = 1) [19,29]
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tum dot. ω is the exciton frequency in each of the quantum
dot. g1 (g2) is the first (second) mode Rabi frequency asso-
ciated with the exciton-cavity photon interaction. a+

1 and
a1 (a+

2 and a2) are, respectively, the creation and annihi-
lation operators of the first (second) cavity field with fre-
quency ω1 (ω2). b+k and bk are those for the phonon with
moment k and frequency ωk. V represents the Förster
interaction which transfers an exciton from one quan-
tum dot to the other. 2Jz represents the static exciton-
exciton dipole interaction energy. The interaction matrix
element M (i)

k is given by [30]
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0 〉 is the correspondent
excitonic state wave function which depends on the struc-
ture of the quantum dots and the internal or external elec-
tric field [23]. Also, we,h(k) depends on the type of the
exciton-phonon interaction. In what follows, we assume
the excitonic state wave functions which localize around
the center of each quantum dot are described by the same
profile [31].
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∆i is the self-energy of the exciton in the ith quantum dot.
2∆12 is the exciton-exciton interaction energy arising from
the exciton-phonon interaction and R2 − R1 represents
the relative position vector between the center of the two
quantum dots.

The nondiagonal transitions exist at finite temper-
ature, but decrease with the decrease of the tempera-
ture [30,32]. For quantum dots where the energy sep-
aration is greater than 20 meV when the temperature
is low enough (T < 50 K), the nondiagonal transitions
can be neglected [19,33] and phonon states approximately
satisfy the Boltzmann distribution. Therefore it is rea-
sonable to just consider diagonal transitions and assume
the phonon states in the vacuum state |0〉 at zero tem-
perature [29]. On the other hand, as the result of quan-
tum fluctuations, some phonon states may change to |nk〉
(nk �= 0) even at zero temperature. Then there exists
nondiagonal transition, such as 〈nk|H ′|0〉. But it con-
tains factor (M (i)

k /ωk)nk which is small for materials with
small λ. λ =

∑
k |M (i)

k |2/ω2
k is the Huang-Rhys factor of

the exciton in each of the quantum dot. For self-organized
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InAs/GaAs quantum dots λ ≈ 0.015 [34] and for other
semiconductor quantum dots such as GaAs [35] and In-
GaAs [15] λ is even more small. Under the conditions
mentioned above, it is safe to average H ′ over the vac-
uum state to get an effective Hamiltonian
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λ is the Huang-Rhys factor mentioned before. β is an im-
portant factor describing the influences of the exciton-
phonon interaction on the transfer of excitons from one
quantum state to another. The factor λ12 is the coupling
constant between two excitons arising from the exciton-
phonon interaction. Results show that the exciton-phonon
interaction affects our quantum system even at zero
temperature.

3 Two-photon and single-photon resonance

As an example of the application of the effective Hamilto-
nian, we assume that the quantum dots are initially pre-
pared in the excited state and the cavity is in the vacuum
state

|ψ(0)〉 = |+,+, 0, 0〉. (12)
Then the evolution of the state can be expressed as
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To capture the nature of the two-phonon resonance in
the system, we use an approximate analysis [36]. We con-
sider the case |δ1|, |δ2| � g10, g20, and |∆12 + Jz − V0|
but |δ1 + δ2| is small. This means that the detunings of
the cavity-fields are much large than the Rabi frequen-
cies and the additional interactions but the system is near
two-photon resonance. In such case, C2, C3, C5, and C6
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The results are similar to those in reference [36]. But
something new is that we use two coupled identical quan-
tum dots to take the place of two uncoupled atoms. The
static exciton-exciton dipole coupling, the Förster interac-
tion and most important the exciton-phonon interaction
are taken into consideration. We find that the exciton-
phonon interaction makes a contribution of 2∆12 to the
static exciton-exciton dipole interaction energy. Further-
more, the Rabi frequency g1, g2, and Förster interaction
V are renormalized to g10 = g1e

−λ/2, g20 = g2e
−λ/2, and

V0 = V e−(λ−λ12) respectively. The two parameters of λ
and λ12 depend on the exciton-phonon coupling strength,
the structure of the quantum system, and the internal or
external electric field. From the definition of λ and λ12,
we have λ > λ12.

The two-photon resonance occurs at Ω = 0. It is obvi-
ous that the additional interactions make a contribution to
the shift of the two-photon resonance condition δ1+δ2 = 0.
With g1 = g2 and δ1 + δ2 = 0, if ∆12 + Jz − V0 �= 0,
the two-photon resonance happens. This is quite different
from the two-atom system. As the additional interactions
affect the cooperative process of the system. The influence
of exciton-phonon interaction on the coherent time evolu-
tion of the system near two-photon resonance is shown in
Figure 1. We see that with the increase of the coupling
strength of exciton and phonons, the Rabi frequency de-
creases. Also the maximum population decreases, as the
exciton-phonon interaction modifies the condition of two-
photon resonance.

For two atoms spatially separated, they do not have di-
rect interaction. However atoms may be located very near
in the cavity, then the dipole-dipole interaction among the
atoms cannot be neglected. This interaction will produce
additional cooperative processes in the system. In this pa-
per, we deal with two quantum dots which have similari-
ties to two atoms. However in realistic situation, the states
in such nanostructures are fragile and are affected by the
environments. Also the interactions between each quan-
tum dot are important factors which influence the time
evolution of the quantum system. Recently, investigating
the effects of such additional couplings is becoming one of
the hottest subjects in quantum information processing.
Our works lie in this respect which is the main difference
between our paper and reference [36].

Next we consider the case |δ2| � g10, g20, |∆12 + Jz −
V0|, and |δ1|. This means that the detuning of the sec-
ond cavity-field is much large than the Rabi frequencies,
the additional interactions, and the detuning of the first
cavity-field. Then the second mode has only a little effect
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Fig. 1. The coherent time evolution of the population in state
|−,−, 1, 1〉 near two-photon resonance. δ1 = 11 meV, δ2 =
−11.1 meV, g1 = 1 meV, g2 = 0.81 meV, V = 0.5 meV,
∆12 + Jz = 1.2 meV, and λ = 0.05, λ12 = 0.03 (solid curve),
λ = 0.5, λ12 = 0.3 (dashed curve).

on the behavior of the quantum system. To understand
the resonance properties due to the cavity, we first analyze
the general feature of the system. Without the two-mode
cavity, it is obvious that the eigenenergies of the system
are E0 = 0, E1 = ω − ∆ − V0, E2 = ω − ∆ + V0, and
E3 = 2(ω − ∆) + 2(∆12 + Jz). The corresponding eigen-
states are |ψ0〉 = |−,−〉, |ψ1〉 = (|+,−〉 − |−,+〉)/√2,
|ψ2〉 = (|+,−〉 + |−,+〉)/√2, and |ψ3〉 = |+,+〉. Now
we consider the effect of the cavity. With initial state
|ψ(0)〉 = |+,+, 0, 0〉, if the cavity frequency ω1 ≈ (E3 −
E0)/2 = ω − ∆ + ∆12 + Jz (i.e., δ1 ≈ 0), the two-
photon resonance happens. The system is dominated by
the change between states |+,+, 0, 0〉 and |−,−, 2, 0〉. In
such case, the state (|+,−, 1, 0〉+ |−,+, 1, 0〉)/√2 is sup-
pressed. The two-photon resonance mentioned before oc-
curs in different modes. Now it occurs mainly in the
first mode. If the cavity frequency ω1 ≈ E3 − E2 =
ω − ∆ + 2(∆12 + Jz) − V0, the single-photon resonance
happens. The system is dominated by the change between
states |+,+, 0, 0〉 and (|+,−, 1, 0〉 + |−,+, 1, 0〉)/√2. At
certain time, the double quantum dots are in the Bell
state ψBell = (|+,−〉 + |−,+〉)/√2. Here, the cavity and
additional interactions also modify the conditions of the
photon resonance.

In such case, C3, C4, and C6 are fast oscillating vari-
ables that can be eliminated. Then we get the equations
of C1, C2, and C5
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Considering the initial condition, the solutions are
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and x3, are the roots of the equation
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+ acd− 2ab2 + b2d = 0. (35)

In Figure 2, we plot |C2|2max and |C5|2max as a function
of the cavity frequency ω1. ∆ = 0.3 meV, V0 = 0.8 meV,
∆12 + Jz = 1.3 meV, ω = 95 meV, g10 = 0.12 meV, and
g20 = 0.08 meV. It is shown that the single-photon reso-
nance occurs at the value of ω1 ≈ ω−∆+2(∆12+Jz)−V0 =
96.5 meV, while the two-photon resonance occurs at the
value of ω1 ≈ ω−∆+∆12 +Jz = 96 meV. The difference
of two resonance frequencies is about ∆12 + Jz − V0 =
0.5 meV. The probability of photon emission at reso-
nance is quite high. To some extent, the Bell state is sup-
pressed by the two-photon resonance at ω1 ≈ 96 meV.
Therefore if you want to produce the Bell state ψBell =
(|+,−〉 + |−,+〉)/√2, you had better choose ∆12 + Jz

and V0 such that the frequency difference between the
single-photon resonance and the two-photon resonance is
large enough.

The parameters in Figure 3 are same as those in Fig-
ure 2, except V0 = 1.3 meV. Then the single-photon reso-
nance and the two-photon resonance occur at the same
frequency ω1 ≈ 96 meV by chance. In such case, the
single-photon resonance and the two-photon resonance co-
exist. The two-photon resonance has higher probability,
but it decreases more quickly with the change of cavity fre-
quency ω1. Due to the influence of two-photon resonance,
two side peaks of the single-photon resonance appear.

Through detuning δ2, this time the second mode has
only a little effect on the quantum system. So the two-
mode cavity acts more like a single-mode cavity. However
taking the additional interactions into account gives us
more complicate results than reference [36]. Depending
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Fig. 2. The maximum value of the populations in state
(|+,−, 1, 0〉+|−, +, 1, 0〉)/√2 (solid curve), |−,−, 2, 0〉 (dashed
curve), with respect to the cavity frequency ω1. δ2 = 30 meV,
∆ = 0.3 meV, V0 = 0.8 meV, ∆12+Jz = 1.3 meV, ω = 95 meV,
g10 = 0.12 meV, and g20 = 0.08 meV.
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Fig. 3. Same as Figure 2, except V0 = 1.3 meV.

on the values of ∆12 + Jz and V0, the frequencies of the
two-photon resonance and single-photon resonance maybe
same or different. Then the quantum system evolves quite
differently. This effect should be considered in practical
applications. Our results are valid for both resonance and
nonresonance cases. Also a recent experimental work [37]
has shown that the dipole-dipole interaction affects the
two-photon resonance in a similar system.

4 Two nonidentical quantum dots

When we use quantum dot systems to take the place of
atom systems, something should be consider in more re-
alistic models. First of all, for the quantum computations
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based on quantum dots, the nanostructures will unavoid-
ably be influenced by the lattice vibrations which we have
discussed in this paper. Secondly, we consider only weak
inter-dot interaction strengths (about 0.1 meV) which
would be expected for two dots with relatively large spac-
ing (about 10 nm) [38]. Therefore, we may neglect inter-
dot tunneling of electrons and holes. Finally, different from
two atoms, it may well be hard to produce two identical
quantum dots in the matrix. Therefore investigating the
influence of parameter misfits of two nonidentical quan-
tum dots on the evolution of the system is becoming im-
portant. Here for simplicity, we assume the cavity model
is single. In the same way we get the effective Hamiltonian
of two nonidentical quantum dots in a single mode cavity

Heff = (ωa −∆1)
[
S(1)

z + 1/2
]

+ (ωb −∆2)
[
S(2)

z + 1/2
]

+ 2(∆12 + Jz)
[
S(1)

z + 1/2
] [
S(2)

z + 1/2
]

+ ω0a
+a

+ g1e
−λ1/2

[
a+S

(1)
− + aS

(1)
+

]

+ g2e
−λ2/2

[
a+S

(2)
− + aS

(2)
+

]

+ V e−β/2
[
S

(1)
+ S

(2)
− + S

(1)
− S

(2)
+

]
, (36)

where ωa (ωb) is the exciton frequency in the first (second)
quantum dot. g1 (g2) is the corresponding Rabi frequency.
a+ and a are the creation and annihilation operators of
the cavity field with frequency ω0.

We assume the initial state of the system is

|ψ(0)〉 = |+,+, 0〉. (37)

Then the evolution of the state can be expressed as

|ψ(t)〉 = C1(t)|+,+, 0〉 + C2(t)|+,−, 1〉
+ C3(t)|−,+, 1〉+ C4(t)|−,−, 2〉. (38)

From the Schrödinger equation, we have

i
d

dt
C1 = [ωa −∆1 + ωb −∆2 + 2(∆12 + Jz)]C1

+ g20C2 + g10C3, (39)

i
d

dt
C2 = (ωa −∆1 + ω0)C2 +

√
2g10C4 + V0C3 + g20C1,

(40)

i
d

dt
C3 = (ωb −∆2 + ω0)C3 +

√
2g20C4 + V0C2 + g10C1,

(41)

i
d

dt
C4 = 2ω0C4 +

√
2g10C2 +

√
2g20C3. (42)

Let α = ωa−∆1−ωb +∆2, which depends on the size and
shape difference of the two quantum dots. Because of loss
of symmetry, for two nonidentical quantum dots α �= 0.
Here we investigate the influence of α on the evolution
of the system in the case of two-photon resonance, i.e.,
2ω0 = ωa −∆1 + ωb −∆2 + 2(∆12 + Jz). The solution of
the equations gives

C4(t) = −i
√

2
2∑

n=1

gn0

4∑
m=1

K
(n)
m

xm
[exp(xmt) − 1] , (43)
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Fig. 4. The coherent time evolution of |C4|2 near two-photon
resonance. g10 = 0.12 meV, g20 = 0.1 meV, ∆1 = 0.3 meV,
∆2 = 0.3 meV, V0 = 0.6 meV, ∆12 + Jz = 4.1 meV,
ωb = 80.0 meV, α = 0 meV (solid curve), α = 3 meV
(dot-dashed curve), and α = 13 meV (dashed curve). α0 ≈
2
√

(∆12 + Jz)2 − V 2
0 = 8.1 meV.

where x1, x2, x3, and x4 are the roots of the equation

−x4 + 2i(∆12 + Jz)x3 + [(ω0 − ωa +∆1)(ω0 − ωb +∆2)
−3g2

10 − 3g2
20 − V 2

0

]
x2 + i

[
2g2

10(ω0 − ωb +∆2)

+g2
10(ω0 − ωa +∆1) + 2g2

20(ω0 − ωa +∆1)
+g2

20(ω0 − ωb +∆2) + 6g10g20V0

]
x− 2g4

10

−2g4
20 + 4g2

10g
2
20 = 0. (44)

Also K(n)
1 , K(n)

2 , K(n)
3 , and K(n)

4 are the roots of the equa-
tions

K
(n)
1 +K

(n)
2 +K

(n)
3 +K

(n)
4 = 0, (45)

(x2 + x3 + x4)K
(n)
1 + (x1 + x3 + x4)K

(n)
2

+(x1 + x2 + x4)K
(n)
3 + (x1 + x2 + x3)K

(n)
4 = A

(n)
1 , (46)

(x2x3 + x2x4 + x3x4)K
(n)
1 + (x1x3 + x1x4 + x3x4)K

(n)
2

+(x1x2 + x1x4 + x2x4)K
(n)
3

+(x1x2 + x1x3 + x2x3)K
(n)
4 = A

(n)
2 , (47)

x2x3x4K
(n)
1 + x1x3x4K

(n)
2 + x1x2x4K

(n)
3

+x1x2x3K
(n)
4 = A

(n)
3 , (48)

with A
(1)
1 = ig20, A

(1)
2 = −g10V0 − (ω0 − ωb + ∆2)g20,

A
(1)
3 = 2ig20[g2

20 − g2
10], A

(2)
1 = ig10, A

(2)
2 = −g20V0 −

(ω0 − ωa +∆1)g10, and A(2)
3 = 2ig10[g2

10 − g2
20].

In Figure 4, we plot |C4|2 as a function of time for dif-
ferent value of α. It is obvious that two-photon resonance
appears while two other states |+,−, 1〉 and |−,+, 1〉 are
inhibited. With the increase of α (α ≥ 0), the Rabi fre-
quency increases first, then it decreases. The turning point
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is at α0 ≈ 2
√

(∆12 + Jz)2 − V 2
0 (|∆12 + Jz| > V0). For

α(g10 − g20) > 0, just exchanging the value of g10 and
g20, the probability of two photo emission increases. When
α = α0 the evolution of the system is rather complicate,
as two-photon resonance and single-photon resonance co-
exist. Though the condition of two-phonon resonance is
satisfied, it is not a good time to realize two-phonon res-
onance. This can be avoided by designing the quantum
system properly.

Before concluding we take the effects of cavity decay
and spontaneous emission of the excitons into considera-
tion. In this case, the time evolution of two coupled quan-
tum dots in a two-mode cavity is given by the following
master equation

∂ρ

∂t
= −i[Heff , ρ] − 1

2
κ1(a+

1 a1ρ− 2a1ρa
+
1 + ρa+

1 a1)

− 1
2
κ2(a+

2 a2ρ− 2a2ρa
+
2 + ρa+

2 a2)

− 1
2

2∑
i,j=1

Γij(S+
i S

−
j ρ− 2S−

j ρS
+
i + ρS+

i S
−
j ), (49)

where κ1, κ2 are the cavity decay rates of the first and
second mode, whereas Γij describe the spontaneous emis-
sion rates (i = j) and the collective damping of the ex-
citons (i �= j). Solving this equation, we certainly can
obtain more reasonable results. Tanaś and Ficek [39] have
discussed the creation of entanglement between two two-
level atoms in the dissipative process of spontaneous emis-
sion and shown that spontaneous emission can lead to a
transient entanglement between the atoms. Pathak and
Agarwal [36] also considered the effect of cavity decay on
two-atom two-photon vacuum Rabi oscillation. If both the
losses due to spontaneous emission and cavity decay in
the coupled quantum dots within a two-mode cavity are
considered simultaneously the calculations will be more
complicated. This will be given in due course.

5 Conclusions

We have investigated the coherent time evolution of two
coupled identical quantum dots in a two-mode cavity. The
exciton-phonon interaction contributes 2∆12 to the static
exciton-exciton dipole interaction energy. Its effect also
adds a factor of e−λ/2 on the Rabi frequency of each
mode and a factor of e−(λ−λ12) on the Förster interac-
tion V . Furthermore, the conditions of two-photon and
single-photon resonance are given. Results show that the
additional interactions change the resonance conditions.
Different from the two uncoupled atoms, we have shown
that for symmetric couplings (g1 = g2), the two-photon
emission also exists. As the additional interactions affect
the cooperative process of the system. Finally, we consider
a more realistic case, i.e., two nonidentical quantum dots.
The parameter misfits of the two quantum dots change the
Rabi frequency and influence the evolution of the quan-
tum system. Although decoherence mechanisms due to
phonon-exciton interactions are a central ingredient of the

present model, we here have only considered static exci-
ton self-energy shifts, induced exciton-exciton interaction
and modifications to exciton-cavity and Förster couplings.
Real decoherence effects produced by exciton-phonon in-
teractions are more important than changes in the reso-
nance conditions. We are sure that this paper would be
much more complete if the performance of the considered
coherent evolution could be evaluated as a function of the
appropriate strong coupling constants and characteriza-
tions. This is a challenging work even for the simpler case
such as a single quantum dot with exciton-phonon cou-
pling. Very recently, Förstner et al. [40] have calculated
the phonon-assisted damping of Rabi oscillations in a sin-
gle quantum dot within a density matrix theory, but the
exciton-phonon interaction is only considered up to the
second order of a correlation expansion. We will follow
the method proposed by Förstner et al. [40] to treat the
coupled quantum dots in a common phonon bath numeri-
cally. This complicated work is underway and will be pre-
sented elsewhere. Finally we hope the present study will
give help to understand thoroughly the real dynamic be-
havior of quantum dot systems in an optical microcavity.

This work has been supported in part by National Natural
Science Foundation of China (No. 10274051) and Shanghai
Natural Science Foundation (No. 03ZR14060) and the Ph.D.
Training Foundation of the Ministry of Education.

References

1. S.B. Zheng, G.C. Guo, Phys. Rev. Lett. 85, 2392 (2000)
2. J.L. Romero, L. Roa, J.C. Retamal, C. Saavedra, Phys.

Rev. A 65, 052319 (2002)
3. S. Clark, A. Peng, M. Gu, S. Parkins, Phys. Rev. Lett. 91,

177901 (2003)
4. X. Zou, K. Pahlke, W. Mathis, Phys. Rev. A 67, 024304

(2003)
5. M.S. Zubairy, M. Kim, M.O. Scully, Phys. Rev. A 68,

033820 (2003)
6. X.X. Yi, C.S. Yu, L. Zhou, H.S. Song, Phys. Rev. A 68,

052304 (2003)
7. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)
8. A. Beige, Phys. Rev. A 69, 012303 (2004)
9. L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, M.

Sherwood, I.L. Chuang, Nature 414, 883 (2001)
10. S.I. Doronin, Phys. Rev. A 68, 052306 (2003)
11. J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van

der Wal, S. Lloyd, Science 285, 1036 (1999)
12. A. Steinbach, P. Joyez, A. Cottet, D. Esteve, M.H.

Devoret, M.E. Huber, J.M. Martinis, Phys. Rev. Lett. 87,
137003 (2001)

13. Y. Makhlin, G. Schoen, A. Shnirman, Rev. Mod. Phys. 73,
357 (2001)

14. J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E.
Lukens, Nature 406, 43 (2000)

15. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, H.
Ando, Phys. Rev. Lett. 87, 246401 (2001)

16. L. Quiroga, N.F. Johnson, Phys. Rev. Lett. 83, 2270 (1999)
17. N.H. Bonadeo, G. Chen, D. Gammon, D.S. Katzer, D.

Park, D.G. Steel, Phys. Rev. Lett. 81, 2759 (1998)



506 The European Physical Journal D

18. X.Q. Li, Y.J. Yan, Phys. Rev. B 65, 205301 (2002)
19. I. Wilson-Rae, A. Imamoglu, Phys. Rev. B 65, 235311

(2002)
20. X. Wang, M. Feng, B.C. Sanders, Phys. Rev. A 67, 022302

(2003)
21. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L.

Sellin, D. Ouyang, D. Bimberg, Phys. Rev. Lett. 89,
187401 (2002)

22. E. Biolatti, R.C. Iotti, P. Zanardi, F. Rossi, Phys. Rev.
Lett. 85, 5647 (2000)

23. S.De. Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R.
Cingolani, F. Rossi, Phys. Rev. B 65, 081309 (2002)

24. B.W. Lovett, J.H. Reina, A. Nazir, B. Kothari, G.A.D.
Briggs, Phys. Lett. A 315, 136 (2003)

25. A. Nazir, B.W. Lovett, S.D. Barrett, J.H. Reina, G.A.D.
Briggs, preprint arXiv:quant-ph/0309099

26. J.H. Reina, L. Quiroga, N.F. Johnson, Phys. Rev. A 62,
012305 (2000)

27. J.H. Reina, N.F. Johnson, Phys. Rev. A 63, 012303 (2000)
28. X.X. Yi, G.R. Jin, D.L. Zhou, Phys. Rev. A 63, 062307

(2001)
29. K.D. Zhu, W.S. Li, Phys. Lett. A 314, 380 (2003)

30. I.V. Bondarev, S.A. Maksimenko, G.Ya. Slepyan, Phys.
Rev. B 68, 073310 (2003)

31. T. Brandes, B. Kramer, Phys. Rev. Lett. 83, 3021 (1999)
32. G.D. Mahan, Many-Particle Physics (Plenum, New York,

1981)
33. L. Besombes, K. Kheng, L. Marsal, H. Mariette, Phys. Rev.

B 63, 155307 (2001)
34. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, D.

Bimberg, Phys. Rev. Lett. 83, 4654 (1999)
35. T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S.

Katzer, D. Park, C. Piermarocchi, L.J. Sham, Phys. Rev.
Lett. 87, 133603 (2001)

36. P.K. Pathak, G.S. Agarwal, preprint
arXiv:quant-ph/0403001

37. C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt,
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